私達の研究グループでは「触媒機能を持つ分子」の特性に着目し、それを利用した新反応の開発を行っています。金属錯体触媒や有機分子触媒に構造的チューニングを施すことで、これまで実現できなかった高難度反応の実現を目指しており、(1)不斉触媒を利用したキラル分子の選択的合成、(2)炭素-水素結合の活性化を利用した機能性分子ユニット構築の効率化、(3)有機分子触媒を利用した不活性芳香族分子の化学変換を達成しています。
当研究室では、新規な金属錯体触媒の開発を通じた有機合成反応の革新を目指し、「新反応の触媒となる独自の金属錯体分子を設計し、その触媒機能を明らかにすること」を目的として研究を行っています。特に、入手容易な合成原料から複雑な構造の分子を短段階で得るための錯体触媒反応の開発、複数の官能基を有する有機化合物を原料とする選択的な官能基変換反応の開発、熱エネルギーに加えて、光・電気エネルギーを効率よく活用するための錯体触媒分子の合成、を中心として研究を進め、実験的・計算化学的手法を併用しながら、金属錯体が示す反応性を最大限に活用するための方法論を追及しています。
有機合成と分子間相互作用を巧みに組み合わせて、人と環境にやさしく、かつ環境保全や医療に役立つ高機能材料の開発を行っています。現在、(i)水や油の中に混入した有害物質を効率よく除去できる分子認識材料の開発、(ⅱ)低分子から高分子まで様々な分子の自己組織化能を利用したマイクロ及びナノ構造体の開発と利用、(ⅲ)弱い相互作用による分子認識を利用したキラル光反応の制御、(iv)光エネルギーを高効率に利用可能な超分子マテリアルの開発と応用、に取り組んでいます。
有機工業化学領域では、実用化を視野に入れた分子設計により高機能の新規材料を作製し、創薬や再生医療に役立つ三次元生体組織モデルの構築を目指しています。私たちの生体組織には、細胞と細胞の間に細胞外マトリックス(ECM)と呼ばれる糖タンパク質が存在し、細胞表面の微小環境を制御することで細胞の機能を調節しています。このECMの働きにインスパイアされた新規高分子材料を創製し、細胞表面の微小環境を制御することで、より生体に近い構造と機能を有する三次元組織体の構築が期待されます。
簡単な分子から、高度に機能化された化合物を合成することが精密有機合成化学の基本です。精密資源化学領域では、資源的にも豊富な典型金属の特性を生かして、従来の手法では達成できない立体および官能基選択性などを有する反応の開発を行なっています。 得られた成果は、機能性分子の合成、環境負荷低減プロセスの構築、生命工学への応用といった領域に貢献します。また、研究途上で得られた予期せぬ現象を迅速に新テーマとして設定し進めていく柔軟性を常に意識して研究を進めています。
太陽光エネルギーを利用して、水素やアルコール等の貯蔵可能なクリーン燃料を作り出す。“人工光合成”と呼ばれるこれらの反応は、実用化されれば世界のエネルギー問題が一気に解決する可能性のある究極のエネルギー製造技術と考えられています。当研究室では、生体機能の中心的な役割を果たしている“金属錯体”に注目し、人工光合成を実現するための基盤づくりに取り組んでいます。
遷移金属錯体は、生物活性化合物や機能性材料を合成する様々な反応を媒介するキープレーヤーであり、これまでに数多くの遷移金属錯体が創出されてきました。
遷移金属錯体に望みの機能を付与するためには、金属を支える有機化合物(配位子)のデザインが重要です。
我々は独自の配位子を設計し、その外部刺激応答性を最大限に活かした遷移金属錯体の合成と応用に取り組んでいます。
また、半金属であるホウ素を含むデザイン型ホウ素触媒の創出と、粗水素を活用した技術の開発にも取り組んでいます。
有機化学を基盤として、新反応・新分子・新機能をキーワードに多彩な研究を展開しています。反応開発においては、既存の手法とは反応機構や結合の変換形式が根本的に異なる分子変換の創出を目指します。ユニークなπ共役電子系を利用する新しい機能性錯体の合成・反応に関する研究も行っています。代表的な研究課題は以下のとおりです。
1)「強い」化学結合の切断を可能にする触媒開発
2)ヘテロ原子を活用した新奇反応
3)開殻π電子系配位子を持つ錯体の合成と反応性
私たちは、生体分子や反応を生体が生きたままの状態で可視化することを目的として、化学原理に基づき設計した分子である「化学プローブ」の開発に取り組んでいます。化学プローブには、蛍光や磁気シグナルを発するスイッチ機能を組み込んでおり、そのシグナルを検出することで生体分子や生体反応を検出することが可能となります。現在、遺伝子発現や免疫現象に加え、骨粗鬆症や糖尿病に関わる生命現象を可視化する化学プローブの開発を行っております。
分子レベルにおける酵素触媒作用の解明と応用を目指して研究を行っています。主に,非ヘム金属酵素活性中心や新規な有機補欠分子属の酸化還元機能に着目し、モデル化学的研究を展開しています。さらに,得られた成果を基にして,新しい酸化還元触媒の開発や実際のタンパク質(酵素)を用いた研究にも発展させ,新しい「生命機能化学」の確立を目指しています。
当領域は電気化学を柱とし、表面・界面を自在に操ることによって新たな材料の開発を行っています。とりわけ常温で液体の塩であり、揮発しない性質もつ「イオン液体」に注目し、電子顕微鏡と組み合わせて新たな分析法を確立したり、従来にないメカニズムの電池を開発したりしています。また、蛍光発光する半導体ナノ粒子の開発にも精力的に取り組んでおり、光によって電子の流れを可視化することで、少し違った視点からナノ材料の性質を理解する研究を進めています。
自然界では水素結合などの可逆的な相互作用を効果的かつ選択的に使って素晴らしい機能を創生しています。私たちの研究室では、分子に備わった自然に集合する性質「自己集合能」と、集合する時に相手を見分ける性質「分子認識能」を利用し、あたかも思い通りに積み木を組み上げるかのように分子の集合体「超分子」を構築して、個々の分子では発現しないような新しい機能をもった材料の開発や、超分子化学における新たな原理の発見、タンパク質の構造機能相関の解明を目指しています。特に、分子の凝集相のなかで最も美しい相、すなわち分子性結晶に注目して研究しています。
私たちは、有機合成化学をコア技術として多様性に富んだ基礎研究を展開しています。おわん型湾曲π共役系分子「スマネン」のユニークな構造に基づく機能・性質の開拓、例えばスマネンの配列に着目したSinglet Fission活性や誘電応答などを示す有機分子の研究を行っています。また、分子が作る弱い分子間相互作用を活用して、刺激に応じて構造・機能を柔軟に変える「硬くて軟らかい」分子結晶マテリアルの開発も行っています。高分子で安定化された金属ナノ粒子触媒の開発も大きなテーマの一つです。特にナノ粒子を取り巻くマトリクスがつくる触媒環境に興味をもって研究しています。具体的には、親水性コロイド系での精密サイズ制御法や、バイオマス材料を含む様々な保護マトリクス(水酸化フラーレン、セルロースナノファイバーなど)の開発を行っています。これに加え、有機合成の研究室にも実装できるコンパクトなレーザーシステムを用いたレーザー化学の開拓や、放射光施設や電子顕微鏡を活用した触媒活性評価、構造・機能研究など幅広く展開しています。
当領域では、「有機合成化学・錯体化学」と「生物工学・バイオテクノロジー」を基盤とし、有機化合物や金属錯体、タンパク質や微生物などを広く取り扱った新規機能分子・機能材料の開発に取り組んでいます。具体的には、新規ポルフィリノイド化合物の有機合成や機能評価にはじまり、非天然金属錯体を補因子とする人工生体触媒の創製、超分子タンパク質複合体を活用したナノバイオマテリアルや高機能ハイドロゲルの開発など、多様な学際研究を実施し、新しい生物無機化学の分野を切り開くことをめざしています。
当研究室では,“ものづくり”の基礎研究に主眼をおき、シンプル(入手容易)な原料から使える物質(分子)の新しい合成方法の開拓を目的とし、効率性、選択性、およびグリーン性を備えた方法論を重視して研究しています。使える分子として有機合成に有用なビルディングブロック、機能材料を指向したフラーレンの誘導体、および天然物に導ける骨格などを取り上げ、それらの合成の新手法の開発を検討しています。
機能性無機材料に関する幅広い研究を行っている。現在は特に、イオン伝導性固体、ガスセンサ、環境触媒、無機顔料、蛍光体などの創成を目指し、新規な材料開発を行っている。イオン伝導性固体では、世界で始めて3価および4価カチオン伝導を実証した。環境触媒分野では、従来の触媒よりもはるかに低温で環境汚染ガスを浄化可能な触媒を創成し、無機顔料開発では、無害でありながら発色の良い顔料を実現した。
高分子材料化学領域では機能性高分子の精密設計・合成と物性・機能評価を研究しています。地球温暖化抑制に寄与できる独自設計のセルロースナノファイバー、バイオポリエステルをはじめとする再生可能資源を利用するバイオマスプラスチックの創製と物性制御、医療、環境、エネルギー分野での応用を目指した高分子ナノ多孔体の新規合成法の開拓と機能開発、ヒドロゲル材料の接着制御技術の開発を行っています。
光・電子・誘電特性を示す共役分子・高分子・超分子・有機無機ハイブリッド材料などのソフト材料をベースとして、そのナノ階層構造化・機能化及びミクロレベルでの特性評価に関する研究を行なっています。また、次世代陽電池や光触媒、光検出器に応用する新たな半導体材料の合成・開発と、基礎物性の解明を目指した新規評価法の開発を行っています。
有機分子が持つ光機能・電子機能に着目し、材料としての基礎的な性質を明らかにするとともに、新しい材料を開発して光・電子デバイスへと応用することを目標としています。このような研究分野は有機エレクトロニクスと呼ばれ、有機ELや、有機トランジスタ、有機太陽電池などがターゲットとなります。一分子の性質をデザインする有機化学から、半導体工学をベースとしたデバイス物理まで、異なる分野の視点から学際的な研究を行っています。
合金やセラミックスを中心とした多種多様な新規無機化合物を設計・合成し、革新的な固体触媒材料を開発します。反応としてはシェールガスやCO2の有効利用、水素製造、窒素変換などを対象とし、化学工業の発展や地球環境の改善に大きく貢献できる触媒づくりを目指します。また触媒の作用原理を物理化学的視点から原子レベルで詳細に解明し、基礎学理の追究と進展を目指します。
光および放射線により誘起される励起分子化学と機能分子化学を基盤として、空間的・時間的に制御した多種多様な励起方法を利用した高活性種反応化学や、分子・反応場の立体的・電子的・構造的・化学的性質を利用した反応制御化学の手法を用いた新しい光化学の研究を行っている。特に高次反応制御や、新機能性分子・高機能性材料、特に人工生体分子デバイスの創製を目指している。
有機物質の機能を分子レベルで解明し制御することを基盤として、優れた電子・光機能を有する化合物の開発および有機・分子エレクトロニクスへの応用を目指しています。拡張π共役分子の設計・合成と物性化学から有機半導体としての機能とデバイス評価までの一貫した研究を行っています。 応用分野としては、有機電界効果トランジスタ (OFET)、有機太陽電池 (OSC)、単分子エレクトロニクス、を対象としています。
環境安全研究管理センターにおいて、不斉光化学反応やキラル発光材料の開発に関する研究を行っています。
これらは、次世代の電子・光デバイス産業、医療工学、安全工学の進展、カーボンニュートラルやSDGsといったエネルギーの有効利用に向けた技術革新の実現に貢献します。
また、環境に有害な有機物質の微量分析について、GC-MSを用いた研究を行っています。
セルロースナノファイバーとは、幅3-15nmのとても微細な繊維であり、地球上すべての植物に含まれる無尽蔵な天然資源です。 2008年、私達はこのナノファイバーを使って「透明な紙」をつくることに世界で初めて成功しました。そして現在は、セルロースナノファイバ-や透明な紙を用いた電子機器:ペーパーエレクトロニクス、分解性センサデバイス、触媒反応器:ペーパーリアクターの開発研究に取り組んでいます。
生物化学工学は、化学工学の方法論と考え方を生物に応用し、これを利用する学問体系です。私たちの研究室は産業生物化学工学を視点として、生物反応を産業応用するための研究をおこなっています。対象としては、抗体医薬や再生医療製品、ワクチンや幹細胞、そして微生物や産業応用酵素生産を目的とした、動物細胞、微生物細胞のセルエンジニアリングならびにその培養、さらにはダウンストリームまでを扱っています。
21世紀を迎え、環境、食糧、エネルギー問題が深刻化しています。今こそ「バイオテクノロジー」を鍵とした環境に優しい持続可能な社会システムの構築が熱望されています。『生物資源工学』とは、バイオテクノロジーの中核となる「バイオの力」を探索し、実用性を評価するための手法・技術を発見し、応用に結びつける学問です。我々は、メタボロミクス(代謝物総体解析)とイメージング質量分析をコア・コンピタンスとして問題解決に取り組みながら、バイオ業界の国際的リーダーたる人材を育成することをミッションと考えています。
私たちをとりまく環境の変化が、私たち人間を含めた生態系にどのような影響をおよぼすのかについては、十分な理解ができていません。そこで私たちの研究室では、環境と生命のかかわりをゲノムレベルで理解し、さらにこれを環境問題の解決に役立てるために研究をすすめています。
食品や医薬品の多くはバイオテクノロジーを利用して作られています。私たちの研究室では、食品やバイオ医薬品を構成する蛋白質、核酸、多糖、などの生体「高分子」の溶液やゲルの物性、構造、機能を理解し、高品質で安全な食品や医薬品の創出に貢献することを目標に研究を行っています。こうした研究のために、超遠心分析や粘弾性測定といった成熟した物理化学的手法と質量分析などの最先端の計測手法による総合的解析を行っています。また、生体高分子と様々な低分子から構成されている食品の物性と機能についての研究にも取り組んでいます。
当研究室では、植物細胞がもつ様々な機能をタンパク質、遺伝子のレベルで解明し利用することで、産業、人々の健康向上、食糧増産、環境保全に貢献することを目指しています。特に、植物が生産する様々な有用化合物の生産に関わる遺伝子を探索し、それらを微生物に導入することで有用な化合物を大量生産する試みや、植物が持つ遺伝情報を自由自在に改変して有用な形質を付与する「ゲノム編集技術」の開発と応用に力を入れています。
ヒト組織に対する生命現象を解明し、モデル化、最適化、計測、生産計画など細胞製造に関する応用研究を行っています。特に再生医療への応用が期待されるiPS細胞・間葉系幹細胞をはじめとした幹細胞の製造工程設計・品質評価・安定化に取り組んでおります。
当研究室のヴィジョンは、革新的バイオテクノロジーを創出することで、誰もが安心して暮らせる社会を実現することです。本ヴィジョンの実現に向け、オミックス科学・情報科学・合成生物学の枠組みを拡張し、主に微生物が持つ極めて多様な機能を分析・再構成・応用することで、次世代のバイオテクノロジーを開発しています。
化石資源に依存した生産・消費サイクルからの脱却が課題となっている今、環境低負荷かつ持続的な運用が期待できる生物を用いた物質生産に期待が集まっています。私たちの研究室では、膨大な種類の分子が複雑に連携して形成されている生体内のネットワークを統一的に理解・再配線することで、未来の物質生産に向けた新しいバイオプロセス (発酵プロセス) 設計に取り組んでいます。そのために、in silico 代謝デザインプラットフォームの開発と分子育種の戦略立案および実証、13C代謝フラックス解析による代謝実験的評価、計算機を用いた酵素デザイン、進化工学、進化分子工学、マルチオミクス解析など様々な技術を用います。これら技術の統合により、生体分子 (要素) から代謝経路 (システム) を理解・構築することで、新しい代謝工学研究を目指します。
バイオ情報計測学講座は2018年4月より活動を開始しました。生物では生体分子(遺伝子、タンパク質、代謝、細胞など)の相互作用ネットワークがシステムとして統合され、生命活動を営んでいます。このシステムを統合する原理を情報科学的観点を援用して解明し、生物の環境適応性、頑健性、進化可能性などの特性を理解することで、その原理を情報技術、ものづくり(バイオプロダクション)、農学、医学へと応用することが期待されています。本講座では先端的な機器分析技術を用いてさまざまな生体分子を計測し、生物のシステムとしての特性を定量的に明らかにすることを目指します。得たデータからシステムの特性を抽出し、さらに計算機、試験管内で生命を組み立て、生命の動作原理を解明することで、有用物質のバイオ生産や新たな医薬品の創出に貢献します。
ある種の微生物は、人類が到底生存することができない高温環境下や、強酸性・強アルカリ性環境下などの過酷な環境(極限環境)でも活発に生育できます。私たちは、こうした微生物が示すユニークな機能に着目し、それらの機能を支える生体分子(遺伝子や酵素タンパク質など)の働きや分子進化のメカニズムを解明しています。また、これらの生体分子を工学的発想に基づき人為的に組み合わせることで、産業的利用価値を有した新たな(天然には存在しない)生物機能を創り出すことに取り組んでいます。
私たちの研究室では、様々な生物(微生物、昆虫、植物、哺乳類細胞)を宿主とした医療用タンパク質生産技術の開発を行っている。特に、薬効に大きく影響する医療用タンパク質の糖鎖修飾に着目している。糖鎖修飾は生産に用いる細胞に依存し、ヒトと異なる構造の糖鎖で修飾された場合、ヒトに対して抗原性・アレルギー性を起こす可能性がある。そこで我々は、これら生産細胞の糖鎖修飾改変技術を開発し、ヒトに優しい構造を持った医療用タンパク質の生産にチャレンジしている。
最先端科学技術の進歩には、その鍵となる機能材料の高性能化や、全く新しい機能をもった材料の創出が重要です。現在、大気圧・超高周波プラズマの物理的・化学的特性を活用した低温・高速・高品質・エコクリーン成膜技術の開発と、高性能太陽電池、薄膜トランジスタ、高感度センサ等、新機能デバイスへの応用技術の研究を行っています。
極限精度のものづくり技術を実現するためには、固体と液体、及び、固体と気体(プラズマなど)の界面における相互作用を原子・分子レベルで理解し、サイエンスに基づいて制御することが不可欠です。当研究室では、原子配列が可視化できる顕微鏡や表面数原子層に感度を持つ表面敏感な分光分析法、量子力学に基づく高精度シミュレーションを駆使して、超精密な表面計測の研究を行います。また、新奇のエッチング現象を活用した高性能半導体ナノ材料の創出や、新しい表面プロセスの開発にも取り組んでいます。これらにより、生産技術の飛躍的な高度化、さらには、クリーンで快適なエネルギー利用社会の実現に貢献したいと考えています。
量子計測領域研究室では、独自の光・超音波計測技術を用いて物質科学・生命科学の幅広い分野にまたがる研究を行っています。1つの重要なキーワードは共鳴です。共鳴現象においては、力学情報・電磁場情報が増幅されるため、通常では観測できない重要な物質内部の情報を得ることができます。音(超音波)で光を制御し、また、光で音を制御して、独自の共鳴計測装置を開発し、ナゾの多いナノ物質や生体分子のキネティクスの本質を探求しています。また、独自の計測技術を基として、携帯電話等の通信機器に使用される次世代音響電子デバイスの研究や、診断・創薬に貢献する光・超音波医療機器の開発を行っています。
当研究領域では、原子・分子の世界を実際に観察・操作することから始まり、特に有機分子を操ることにより、ナノメートルの世界で「ものづくり」を制御することを目的としています。また、小さな世界のさまざまな現象に伴う、微小な物理・化学量を精緻に計測するための新しい装置を開発し研究を行っています。一方で、得られた知識をもとに、新しい概念に基づいた新規なデバイス開発にも取り組んでいます。
科学は、みえなかったものがみえるようになったときに大きく進歩します。我々が追究する「原子スケールの表面創成」はその進歩に貢献するコア技術です。当研究室では、プラズマ中の活性分子や溶液中の活性ナノ粒子を駆使することで、誤差 0.5 ナノメーターの精密さで理想の形状をつくり、その表面を世界で最も滑らかにすることに成功しました。原子レベルの確かさを持つ X 線ミラーや半導体基板表面をつくる技術を確立しました。X 線ミラーは、ナノ構造や細胞を観察できる X 線顕微鏡や、天文学を進展させる X 線宇宙望遠鏡に搭載され、科学の新たな扉を開いています。
より高性能な半導体デバイス、有機デバイス、高効率太陽電池、燃料電池等、新しい材料を作るには物質中の電子や原子の振る舞いを詳しく知る必要があります。しかしながら、実験的にそれらを調べることは困難な場合が多いです。そこで、我々は物理法則にもとづく精度の高いコンピューターシミュレーションを行うことで、物質の中の電子や原子の振る舞いを観察し予測することを行っています。量子力学の原理に基づく独創的な電子状態計算手法やシミュレーションプログラムを開発し、スーパーコンピューターを駆使して、物質の電気的・磁気的な性質や固体表面上での触媒反応の進み方など明らかにしています。それによって、新しい物質やプロセスを設計する指針を与えるとともに、実験グループと共同して理論的予測の実証を行い、産業、エネルギー、環境といった社会を支える分野に寄与することを目指しています。
人類は、資源・エネルギー、食料と人口、気候変動・自然災害、都市化と貧困などの地球規模の課題に直面しています。それらを乗り越えて持続可能な社会を築くためには、人と人の絆、そして人と自然との共生を大切し、問題解決に希望をつなぐテクノロジーの発展が求められています。サステナブル社会の実現と価値ある未来のために、私たちは材料そのものの設計から、異種材料の組み合わせや新構造の採用によって、革新的な機能を発現するデバイスの創製を目指し、幅広い見地から次世代のグリーンナノエレクトロニクスを支える研究開発を進めています。
革新的ナノスケールのイメージング技術の開発を進めながら、ナノ物質に発現する特異な物理・化学現象の探索と解明を進めている。具体的には、光誘起力顕微鏡を用いて、分子の電子遷移の誘起分極パターンを画像化し、光と物質の相互作用の本質に迫る研究を推進している。また、固体表面で発現する新奇な触媒反応の解明と探索を進めている。さらに、低消費電力・超高速なバイアスの開発に不可欠な半導体界面の散乱中心や界面電荷をナノメートルの空間分解能で可視化・解析する技術の開発を進めている。
ナノマテリアル領域では、カーボンナノチューブ(CNT)やグラフェンなどの構造を思いのままに操る成長技術の開拓や、将来のナノデバイス応用に向けた新規機能を引き出す研究を進めています。そのための基礎となるナノ構造形成過程の背後にひそむ表面現象について原子レベルでの理解を進め、自己組織化によるナノ構造形成の研究へとフィードバックしていきます。さらに、これらナノ構造体が持つバルク材料とはまったく異なるユニークな物性を活用して、新機能ナノデバイスへと応用展開を図ります。
ナノスケールの試料を光を使って観察することは大変魅力的です。光は直接的に物質と相互作用するので、構成分子について多彩な情報を得ることができます。本研究室では、ナノスケールの空間分解能で分光測定を行う手法を開発しています。プラズモニクスと近接場効果を、ラマン散乱やフォトルミネッセンスといった分光法を組み合わせると、ナノの世界を可視光で見ることができます。
藤田研究グループは、光と分子・イオン・原子との相互作用を駆使して「ナノの世界を観る・操作する」ナノフォトニクス技術を研究しています。さらにナノフォトニクス技術を活用し、常識を覆すイメージング技術・センシング技術・デバイスの開発や、その材料科学、バイオメディカル分野での応用も展開しています。
本領域では、自然界に存在しないナノ物質の創製と、それらナノ物質で発現する新奇物理現象の解明、さらにナノ物質を用いたデバイス創出への応用研究を展開しています。具体的には、固体表面上に作製した原子レベルの厚さ・太さの2次元・1次元ナノ物質中に閉じ込められた電子の特異な振る舞いを観測し、その起源を解明しています。研究は、我々が開発・高度化した学内の装置に加え、国内外の放射光施設なども積極的に利用することで進めています。
本研究室ではプラズモニクスやメタマテリアルの基礎研究を通じて革新的なナノフォトニックデバイスの実現をめざしています。 メタマテリアルでは2次元のメタマテリアルであるメタサーフェス(メタ表面)の研究を行っています。これは金属ナノ構造体や高屈折率誘電体をミー共振器として平面基板上に配列させたものです。メタ原子の散乱と吸収を制御することで、回折限界分解能を示すカラー印刷、完全吸収体や赤外線エミッターなど多様な機能を実現することに成功しています。また、プラズモニクスではプラズモニック導波路やハイパボリックメタマテリアルの研究を行っています。これにより、回折限界のために原理的に不可能と思われていた超微細かつ低消費電力のフォトニックデバイスの実現を目指しています。また、メタサーフェス完全吸収体を熱輻射フィラメントに応用し、黒体輻射を制御した高効率エコ電球のプロトタイプを実現しました。
先駆的な光操作・光計測技術群を駆使し、新奇な物質・生命機能を探求しています。
❶レーザーによる秩序構造形成の自在制御:レーザーの物理的作用(熱・電場など)により分子や原子の集合・配列を自在制御し、従来法では得られない構造・形状・サイズ・機能を有する革新的材料(エレクトロニクス素子、医薬品、人工細胞など)の創製を目指しています。
❷ソフトマターの特異な構造・機能の解明:系の引力・斥力バランスを乱さない非侵襲な光計測技術を駆使し、膜、ゲル、細胞組織(オルガノイド)などの柔らかい物質群に特異な構造や機能を調べています。
先端物性工学領域(小野研究室)では、X線・中性子線などの量子ビームとインフォマティクス技術を組み合わせた先端計測・解析技術開発を行っています。材料の構造や物性をマルチスケールで解明するためのX線顕微鏡観察、機械学習を用いたデータ解析、ロボットによる実験の自動化、AIによる計測の最適化などに取り組んでいます。
人類は、資源・エネルギー、食料と人口、気候変動・自然災害、都市化と貧困などの地球規模の課題に直面しています。それらを乗り越えて持続可能な社会を築くためには、人と人の絆、そして人と自然との共生を大切し、問題解決に希望をつなぐテクノロジーの発展が求められています。サステナブル社会の実現と価値ある未来のために、私たちは材料そのものの設計から、異種材料の組み合わせや新構造の採用によって、革新的な機能を発現するデバイスの創製を目指し、幅広い見地から次世代のグリーンナノエレクトロニクスを支える研究開発を進めています。
半導体光触媒は、有機物に対する高い分解機能や光励起親水化機能などの
セルフクリーニング機能を有し、様々な環境浄化に重要な役割を担う。しかし、その反応機構については未解明な部分が多く残されている。原子間力顕微鏡を
駆使して、光誘起表面キャリアの挙動や光触媒プロセスなどの解明を進めている。このような研究は、従来の触媒にはない、新しい機能を持った触媒設計の開発や新しい物性を持った新奇材料の発見に結びつくものと考えています。
ナノテクノロジーとバイオロジー、さらにフォトニクスを融合したナノ・バイオフォトニクスと呼ばれる研究分野の開拓を行っています。金属ナノ粒子、金属ナノクラスター、半導体量子ドットなどのナノマテリアルに代表されるナノテクノロジー、赤外分光やラマン分光など分子を分析・識別する振動分光法、超短パルス光を用いる非線形フォトニクスを駆使し、細胞や生体分子を超高感度・高分解能でセンシングする技術の研究・開発を行っています。
車の自動運転や交通機関の運行最適化に代表されるサイバーフィジカルシステム(Cyber-Physical System)を実現するためには、動きを計画する意思決定(Decision)と計画した動きを実行する制御(Control)の研究が必要不可欠です。本講座では、意思決定と制御に関する数学的理論、アルゴリズム、およびそれらの実問題への応用について研究しています。ロバスト最適化や乱択アルゴリズム、数式処理などのアプローチにより、意思決定と制御における真に有用な方法論およびツールを確立することを目指します。
世の中には非線形現象があふれています。工学・情報・生体等のシステムに現れる多様な現象が、非線形数理モデルにより記述されます。非線形数理講座では、様々な実現象の数理モデルを対象として、実現象の背後にある非線形数理を理解すること、非線形数理モデルを解析するための方法を開発すること、さらには非線形数理を工学・情報システムに応用することを目指して研究を進めています。
自然界の原理や法則を解明する自然科学に対して、人間が作り上げた人工物を取り扱うための科学技術が重要になっています。情報科学はその中心的存在であり、さまざまな取り組みが展開されています。本講座では、自然科学と情報科学の融合をめざして、光現象や光技術を基盤とする情報技術である「情報フォトニクス」に関する教育・研究を行っています。
システム数理学講座では、数理計画法や統計的手法などの数理科学的アプローチによるシステム化とその応用に関する教育研究を行っています。最適化手法やデータ解析法の理論的展開に取り組み、企業における生産活動、社会現象や自然現象のモデリング、不確実性科学に基づくシステム解析、システム評価のための多基準型データ分析法などの研究を通じてシステム化技術を養うことを目指しています。
本研究室では、多様性に富む、有機材料の分子構造、電子状態、物性を高度に制御し、フレキシブルエレクトロニクス、フォトニクスへと昇華させていくための基礎科学と先端技術の融合科学を研究しています。数学や物理学などの基礎科学に根ざした学術から実社会に貢献するシステムまでを学ぶことをモットーにしています。
我々は、蛋白質結晶学とクライオ電子顕微鏡の手法で複合体蛋白質の立体構造を解析し、立体構造に基づいて生命機能を理解しようという研究室です。蛋白質の構造を解析することだけで、全ての生命現象を理解できるとは思いませんが、生命が持つ基本的なシステム、例えば「呼吸」「光合成」「生体運動」などに限って考えた場合、その働きは複合体蛋白質の結晶構造を基に理解することができます。研究対象は主として蛋白質の複合体と膜蛋白質であり、「光合成生物」「分子モーター」「生体超分子」をキーワードに構造研究を進めています。